Dyadic Carleson embedding and sparse domination of weighted composition operators on strictly pseudoconvex domains
نویسندگان
چکیده
In this paper, we study the behavior of weighted composition operators acting on Bergman spaces defined strictly pseudoconvex domains via sparse domination technique from harmonic analysis. As a byproduct, also prove type estimate for which is adapted to Sawyer-testing conditions. Our results extend work by first author, Li, Shi and Wick under much more general setting.
منابع مشابه
Hankel Operators and the Dixmier Trace on Strictly Pseudoconvex Domains
Generalizing earlier results for the disc and the ball, we give a formula for the Dixmier trace of the product of 2n Hankel operators on Bergman spaces of strictly pseudoconvex domains in C. The answer turns out to involve the dual Levi form evaluated on boundary derivatives of the symbols. Our main tool is the theory of generalized Toeplitz operators due to Boutet de Monvel and Guillemin. 2000...
متن کاملComposition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
متن کاملWeighted composition operators between growth spaces on circular and strictly convex domain
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
متن کاملSobolev Space Projections in Strictly Pseudoconvex Domains
The orthogonal projection from a Sobolev space WS(Q) onto the subspace of holomorphic functions is studied. This analogue of the Bergman projection is shown to satisfy regularity estimates in higher Sobolev norms when ß is a smooth bounded strictly pseudoconvex domain in C". The Bergman projection P0: L2(ü) -» L2(S2) n {holomorphic functions}, where S2 c C" is a smooth bounded domain, has prove...
متن کاملScattering Theory for Strictly Pseudoconvex Domains
The spectral theory of a metric of Bergman type on a strictly pseudoconvex manifold is described and the scattering matrix is shown to be a pseudodifferential operator of Heisenberg type.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin Des Sciences Mathematiques
سال: 2021
ISSN: ['0007-4497', '1952-4773']
DOI: https://doi.org/10.1016/j.bulsci.2021.103067